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ABSTRACT. 1In this paper is presented a wing calcula=- - /3%
tion method which, based on the source supersonic method,
seeks its precision through a refined representation of the
leading and the trailing edge shape, and also through the
systematic study of the singularities at the leading edge.

The benefit obtained from the precautions taken through
a thorough study of the causes of error is outlined. A few
examples of steady and unsteady flows are presented, and com-
parisons are made with previously used methods.

After~a preliminary work done on the electric calculator,
designed at the C.N.R.S. Analog Computation Center for surface
integration, a program has been written for the Univac 1108
computer. This program permits a systematic exploitation
thanks to the wide generality of the method and to the very
short computing time involved.
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velocity modulus at infinity upstream.

perturbation velocity along the x, y, 2 "
axes. -

speed of sound in unperturbed flow.

time.

: perturbation velocity potential.

coordinates of a current point.

coordinates after Prandtl-Glauert transfor-
mation.

: characteristic coordinates.

~

: length of the side of a square in the

axes, and of the diagonal in the x, y axes,

: real and imaginary influence coefficients.

£}

3

truncation coefficients within the wing.
truncation coefficients on the current sheet
upstream.

coefficients of the &evelopment of w on the
current sheet upstream.

pressure coefficient, p = pressure
p = density.

drag coefficient.
1ift coefficdient.

moment coefficient.

wing surface.
center chord.
vibrational frequency.

reduced frequency.

¢ characteristic frequency.

: number of squares in the division.

GCZ = Cz (calculated) - Cz (analytic).

§C_ -

mx
R( )
()

me (calculated) - me (analytic).

: real part of.

imaginary part of.




Abbreviations Used

T. P. : thickness problem.
L. P. : 1ift problem.
) L. E. ¢ leading edge.
T. E. : trailing edge.
T. S. : truncated square.

I. Introduction

The source method has been proposed by Puckett [1] for calculating the thick-
ness effect in steady superspnic flow. This method is easily applied to the
lift effect when the leading edge'is supéfséniéﬁlddifficulties appear in this
application when Ehe leading edge becomes subsonic whether or not the flow be
stationary. For steady flow, Evvard [2] has proposed the well-known method of
reflections, while Hancock [3] prefers inverting an integral equation; these
two methods have a li&ited range of application. For unsteady flows, Garrick
and Rubinow [4] showed the possibility of using distributions of impulse sources,
which Pines and Dugundji [5] integrated numerically by the "box" method. Ta Li
[6] proposed boxes whose diagonals are Mach lines, while Zartarian [7] preferred
to use (along with Evvard) characteristic coordinates which determine a lattice
parallel to the Mach lines. More recently, Stark [8] used a method similar to
that of Zartarian by insisting on infinities in the current sheet upstream,

whereas Fenain [9] inverted the integral formula after making it discrete.

In all these methods of calculation, which have led to numericalization,
an accurécy of about 5% can be achieved. Improvement in the accuracy cannot be
expected by increasing the fineness of the division, since computation time in-
creases much faster than accuracy; a systematic study of causes of error and of
appropriate corrections was therefore launched at the C.C.A. of the C.N.R.S. in

1961.

The solution, fairly rapidly developed for steédy flows [10],was suffi-

ciently promising that comnstruction of an electric computer adapted to unsteady




problems was decided upon. It is due to this compufer that the method described
here was determined; when these results were presented to Mr. Dat, he encouraged
me to transpose this method for use in a large computer. This transposition wés
recently accomplished for the Univac 1108, which allows systematic exploitation

of the method.

II. Formulation of the Problem

Consider a flow for which the Mach number at infinity upstream is M> 1.
Because of the assumption that perturbations are small, it is possible to linea-
rize the ‘equations and the boundary conditions. It is on the plane z = 0,
called the wing plane, that the boundary conditions will be written (Figure 1).
In terms of the factor U, the velocity modulus at:infinity, the velocity at any
point is written:

V= Ut + Wi+ of + wi
=
u, v, and w are derived from the wvelocity perturbation potential ¢ which satis-

fies

2 1 .
&Bz(?xx"" Quy ™ Pzz = — (z‘z ?tt +2 ‘-U“ ‘?xt) (l)

with \
g2 = M2— 1.

The second term of this equation is zero when the flow does not depend on

the time t.

The source method gives an integral solution of (1) in the form

¥

fJ‘ ("(Ev Ny of, l— 71) -+ “"(Zn s 0+q» l—'—‘:Z) didf) (2)
BT Jem =Rl
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(?(.’I:, Ys 0+: t) = -
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The number O+ indicates that the solution is calculated on the wing in the
upper half-space; it is convenient to consider the lower half-space by separa-
ting the thickness problem (T. P.), for which ¢ is even in z (¢+ =¢ ), and the
1ift problem (L. P.), for which ¢ is odd in z (¢ = =¢7).
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The quantities 1., and T, can be expressed as functions of the space

1
variables: Ze
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It should be noted that in the steady-state, the waves emitted at (t - T

)
1
and (t - Tz) are identical, which makes them indistinguishable, and solution
(2) is written
“’ 5) q! ) dEd )
oz, y,0 ffH 1/.1:-—-;2—""“ y— ) K (4)

Whether the problem be steady or unsteady, the domain of integration H is
defined as the portion of the plane z = 0 which is simultaneously in the front
Mach cone of pointb(x, y) and perturbed by the wing (Figufe 2). The horizon-
tally hatched zones can be ignored for the T. P. since the parity of ¢ makes

= 0 outside the wing. " In contrast, for the L. P. ¢ is odd, and so is zero on

these surfaces. Then an inverse problem must be solved to determine w.

For clarity of exposition, steady flows will be treated first, then un-

steady flows in the balance of the paper.

= By — ) [af®. (3)
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//f oY III. Steady Flows
\,\ i
\
N\ III.1. Definition of Coordinate
2 Axes

To deal with orthogonal Mach .

lines, a.-Prandtl-Glauert transfor-

¥ mation can be performed:
X
Figure 3. X=z Y=gy Z=4f (5)

Solution (4) is then written

w(X, Y}

, _ 4 - dXdy.

On choosing characteristic axes centered on X, YO, this expression is

simplified and the limits of integration are conveniently expressed:

- 4

X _ .
A= (Y—Y)— (X—X)=Y—X + 1
p=—(Y—Y)— (X—X)=—Y—X +m (6)
o O rE Melny
o(Xq Yol = olh m) = — z52 JO fo Vo dndy. (7

The quantities 1 and m are the coordinates of the former origih in the new

axes, while L and M are the terminal limits of the perturbed domain (Figure 3).
III.2. Placing the Lattice

The division chosen for calculation of the integral is quite naturally
parallel to the new A, u axes and thus to the Mach lines. It is desirable to
define two lattices: the first, fixed to the wing, carries the boundary condi-~
tions in discrete form; the second constitutes the region of integration, which
contains the influence coefficients. The integral solution is calculated at

each node of the wing lattice using a form approximated by finite summation:

' 2e .
ol, m) = — Bx z 0 qui‘llq (8)




where

w= o (o4 1) (1 +3)¢) :

(9

and

b= 7 [ [ (V) (VA Vi) (10)

In the program for numerical computation it is anticipated that the énaly—
tic expression of the L.E. and the T.E. can vary from the root to the tip. In
practice it is sufficient to specify the number and positions of the junction
points and the parameters which define arcs of second-degree curves for the L.E.,
and of straight segments for the T E. Such a definition of the T.E. seems suf-
‘ficient since it is generally prov1ded with flaps, which leads the manufacturei‘g~
to generate it by straight segments. Further, if the study of a particular
case would propose a curved T.E., absence of a singularity in the current sheet

downstream would allow approximation with good accuracy without having to use

too many segments.

After the program has read the set of Mach numbers for which the calculation
is to be made; it takes them one by one, carries out the Prandtl-Glauert trans-
formation, and determines the characteristic square circumscribing the wing
(Figure 4). The wing lattice is then constructed as a function of the fineness

of the desired divisiom.

By considering the symmetry or antisymmetry in Y, one can generally limit
the calculation to those points of the wing where Y > 0, which moreover leads
to a determination of the precise limits for the calculation of ¢ or of the in-,
fluence coefficients kpq; All these precautions avoid calculation of ¢ at use-
less points, and where the number of squares appearing in the finite sum is
greatest. The limit to the calculation of the kpq is especially important for
unsteady problems where the  table of the kpq is really a double index, and rep-

resents a substantial part of the computing time.




ITII.3. Lack of Precision Due to
il Discrete Integration ~

Discrete integration gives an
exact result only if the function to

be integrated is effectively constant

Limit for
calcula- on each element of area: Since the
tion of ¢ o .
singularities in the kernel are in-
Limit for -
calcula- cluded in the computation of the in-
tion ‘of fluence coefficients kpq’ it is only
ﬁ . pq the variations of w (A, u) which can
Figure 4. lead to lack of accuracy.

In practice, the lack of accuracy is slight if w(i, u) is continuous, and
a reasonably fine division (20 x 20) allows good accuracy (0.5%Z). A rather fine
division is also necessary for good evaluation of the overall values. In con-
trast, a discontinuity in the slope leads to large errors, called truncation
errors, which generally appear at the L.E. This discontinuity can be finite
(for a T.P. or for an L.P. at a supersonic L.E.) or infinite (for an L.P. along
a subsonic L.E.). This last case is the more ticklish to treat, since the in-
finite slopes are to be determined by solving an inverse problem: as has been

shown in Section II, the condition to be imposed outside the wing is ¢ = 0.

Most computational methods have sought to avoid the necessity of point-by-
point inversion outside the wing. The most general and most elegant of these
was proposed by M. Fenain and D. Guiraud-Vallée [9]. By considering that all
the squares are completely filled, and that the slope is constant on each square,
they could invert the linear transformation which gives ¢ as a function of w.
Having thus computed the inverse influence coefficients, they could express ¢(P)
on the wing as a function of the slope of the square whose downstream extension
is at P, and of previously computed values of ¢ upstream from P. This avoids
computing slopes outside the wing, and saves computer time, especially if the
Mach number is small. hﬁowever, to obtain very accurate results would require
much too fine a division: it would overload the memory and require too much
' computer time.

8
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A For such a more subtle
A analysis it is necessary to con—
sider the exact form of the L.E.

{(not to consider that all the

squares are completely filled);

it 1s also necessary not to neg-

lect the form of the local in-

finities (not to suppose that

the slope is constant over

' each square).
Figure 5.

ITII.4. Influence of That Portion of a Truncated Square Which Is Imside
the Wing

This is the only part which has any influence in the T.P., or when the L.E.

is supersonic, because w = 0 outside the-wing.

It can be considered that the slope is constant on the wing and that the
L.E. is a straight line within any one truncated square (T.S.). A T.S. is thus

subdivided into two trapezoids (Figure 5).

It is then easy to calculate the truncation coefficients K?q, where the

index j relates to the form of the T.S. under consideration, and pq its place

_ JJin (—1(;\% (1L

. t.
KW = S5 =

. hekpg

in the region of integration.

This computation could be carried out for each square j and each position

pq, i.e., for each point of the calculation.

This solution would be incontestably accurate, but it would considerably

increase the computation time.
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If the coefficients K?q are not equal to the cross-hatched areas of the

wing in Figure 5, it is principally because of singularities in the kernel 7%:.:
These singularities lie on the lines A = 0 and y = 0, so it is logical to make
sure th§t the variation of K?q is small for all computational points where, for
example, p = 0 and q # 0. Depending on the form of the T.S. considered, the
difference SK? between K?l and K?q is variable; but if this difference increases
with q, it is weighted with the influence coefficient KOq which decreases when

q increases. Finally, k 6K§ ~ 0.001, to be compared to the influence coeffi-

Oq
cient k. . = 1.
00 .
Because of this fact, it is sufficient to compute fgp;*ggnstanté:ﬁbgigéqﬁ;

TfS.’once'andrfqr all at the beginning of the computation.

Ki= K% ~~  corresponds tO ) -0, p=0
K7z K% ~ K% corresponds to »=:0, w20
h;-h? ~ BW corresponds to »# 0, u=0
Kj = Sins i corresponds to A& 0 w0
A
The coefficient Kj = Sint is the proportionality constant at the interior

surface of the square.

Depending on the Values of p and q (i.e., the point of computatlon), one

of these four constants KJ is chosen.

III.5. Influence of Infinite Discontinuities

Two cases can be presented: L.E. curved, or L.E. subsonic in an L.P.

In the case of a curved L.E., there is a direct problem, since the curve
is known; this effect can be computed separately, which adds a contour integral
(not treated here). The suction effect of a curved subsonic L.E. will not be

considered further.

For a subsonic L.E. in the L.P., the problem is mixed, and the infinity of

the current surface cannot be treated separately — it is included in the

10
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solution of the inverse problem which
allows the condition ¢ = 0 to be satis-’

fied outside the wing.

vl Further, the L.E. determines the
RS . truncation of many squares before the

“ﬁ |

wWs3?.4.
- \\\\ p=0 problem is thus indeterminate (Figure 6).

condition ¢ = 0 can be written. The

'\)

Figure 6.
By neglecting the curvature of the

current surface it is possible to assume that there is a constant average slope
on the portion of the T.S. outside the wing. The indeterminacy is then removed !
by the further supposition that this average slope does not vary from one square

to another.

Such a procedurq¥correctly represents the L.E. thanks to the coefficients
K§ and (1 - Kj) which affect the parts interior and exterior to the wing, res—
pectively. However, the overall results are mediocre, as can be anticipated
from the oscillation of the values of CP, which can be as much as 507%. This
oscillation is two or three times smaller than if the form of the T.S. is not
considered, and it expresses the influence of the curvature of the current sheet

near the L.E.

The truncation coefficients "upstream'" must them include not only the form

of the truncation, but also the curvature of the current sheet:

f f V A e (12)

hek,,

All q

Because of the predominant influence of the 51ngu1ar1ty lines, four coef-

ficients A; are enough. They are defined by the same process as the KJ.

Study of conical flow [1ll] provides knowledge of the form of this current

sheet. Carrying out a. limited development, one finds:

11




W=, [1 + 1—}% (1 + Ad + Bd® + O(ds))] (13) -

where YO is the angle of attack of the wing, and d is the distance between the
L.E. and the point of the current sheet where w is computed, measured along a
characteristic line (d = 0 at the L.E. and d = 1 at the apex). Such a develop-
ment can be carried out for any wing. The coefficient K includes the local
sweep of the wing, which determines the "intensity” of the infinity; it is thus
the same as that for a conical wing of the same sweep angle. The coefficiént~B
is modified to include terms of O(d3), and brings about the fit w = 0 at the apex
by writing B = —C% + A+ 1). The coefficient A acts on the curvature at a cer-
tain distance from the L.E. It is influenced by the shape of the portion of

the wing which is intercepted by the forward Mach cone of the point on the lead-
ing edge, as well as by the distribution of slopes within this portion of the
wing. It is impossible in practice to include all these parameters, but even

a large wvariation of\ﬁ.will automatically be compensated by the simultaneous

variation of B, and is expressed only by very small differences in the propor~ /8

. . . . . - i
tionality relationships among the upstream truncation coefficients Aj'

Overall sweep Indeed, only these proportionality

relations have any influence, since the

general amplitude of the upstream slopes

is controlled by the condition ¢ = 0.
This is why the choice of the coeffi-
cient A corresponding to a conical wing
with sweep equal to the mean between
the local and the general sweep angles
(Figure 7) is a satisfactory approxima-

-tion. This is, of course, a better ap-

proximation than that of using only the

term A and making it fit w = 0 at the

v
% apex.

Figure 7.

12
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 Figure 8.

The oscillation of Cp is reduced to less than 57 even if the flow is not

conical, which shows a posteriori the good basis of the discussion above.

~,

~¢

I11.6. Precision Obtained

The group of corrections presented in III.4. and III.5. give the velocity
potential with an:accuracywpf'the‘gyderAQf70.2% for the thickness effect, and
0.5% for the 1lift effect (relative errors of the local values with respect to
the maximum value of ¢). Figure 8 gives the distribution of these errors for .

various sections x = constant for a delta wing with lozenge profile (T.P.).
To compute the overall values it is necessary'again to differentiate to

obtain Cé, and to integrate the product f(x, y) °* Cp over the entire wing. De-

pending on whether Cx’ me, or Cz is to be computed, one takes
£(x, y) =w(x, y), £(x, y) = x or £(x, y) = 1.
In unsteady flow, f£(x, y) will be the displacement of the associated mode for

the computation of the generalized forces. 1In that case it is important not to

lose the accuracy obtained in the computation of ¢. Errors can be introduced

13




Distribution of i

‘ Cx at the T.E. from the necessity of interpolating ¢ at
'S

rv«**-~**‘\ the L.E. and at the T.E. A linear inter:
1 i ~~. polation can be insufficient at the L.E.,

the most delicate case being that where
the L.E. and T.E. are in consecutive

squares, or even in the same square.

~ y This often occurs at the wing tip, which

is also a region of high gradient of the
Errors in C_ at the T.E. )

1% overall values. -The final error can thus

A e i become greater than 1% if certain pre-

Y cautions concerning the curvature of ¢
-0,52

-12

are not taken (they will not be discussed

here). Figure 9 shows, however, the dis-

Figure 9.

tribution curve of CX at the T.E. and the
error in that distribution for the wing shown in Figure 8. After integration
of curve 9, one find§¥Cx = 2.1086 (analytic value is Cx = 2.10757); the error
in the overall value is thus 0.05%, which is explained by a certain compensation

of errors in ¢ during the final integratioms.

As Zartarian has proposed [7], it is possible to compute the overall values
directly, without going through Cp. In fact, the difficulties are the same,
and identical precautions yield an equivalent result. Thus it should be consi-
dered that computation of Cp is a supplementary step whose sole purpose is the
localization and evaluation of the errors committed. The corresponding compufer
time is very short in the overall scheme, which justifies use of this intermedi-

ate step.

1V. Unstable Flows

Thanks to harmonic analysis the slope can be written

LT . JoC . )
wie, y, o+, 1) =" E E etont . (2, y, 0t). 0 (14)
m=1 =1

14
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The linearity of the equations permits study of each case separately, and
final summation of the results. It is fundamental that the multiplicity of -
cases to be studied requires very rapid solution of each one; the solutions to
be adopted must not be too burdensome on machine time.

N
Consider a movement of frequency w; the displacement is written
wlz, ¥, o‘*‘,‘l) = elot w(z, y, 07). (15)

After transformations identical to those of the steady case, solution (2)

can be written as

olx, y, o, —
g f J~\I w(, w)e-iK(x-+u) cos(¥ V)‘p‘)d)»d i (16)
s Vo ‘

Inserting relations (3) into Formula (2) yields

= ' wM
K= Tait and J 132

It is easy to construct a lattice identical to that proposed for the steady
case, and so it is possible to compute ¢ by a finite summation:

2,Q

238
—= oz, y, 0t ) =¥ Fro Koy
i s RO =T = 0, Fo (a7
N VAT 1 oo ’
FP(I=“_}_ ((p+§)e! (‘I+ §)€> =qu+1gpq‘
where szé»?“”—i%“ (18)
T pede pate cos (K (A + ) cos (J]/ku.) D
with - Koy = 2 L}a B f " T (19)
1 J‘(Pﬂ)» J‘('I‘H)ﬁ sin’ (K(x + @) cos (J)/aw)
= drd.
and P ke o Vw (20)

The real part kpq of the influence coefficient,qu has as its limit the
steady influence coefficient when the frequency w approaches zero: this is why

the same notation is given it.

15
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-iK{x + ) in the kernel, This term

It is important to include the term e
varies fairly rapidly, independently of the mode qu considered, and systemati-:
cally opposite to the variationlof 7;;, for the lPq term,. along with the singu-
larity lines.

~

Computation of the unsteady influence coefficients is much more delicate

than that of the steady coefficients. The accuracy of their computation affects _

the whole accuracy of the results, which is why special care has been given it.
IV.1l. Computation of the Influence Coefficients

Computation from first principles cannot go beyond the first integral,
where the expression is already in Fresnel integrals. As numerical integration
is necessary, it is more effective to return the problem to its source. Re-
taining the basic kernel -7£?, the surfaces cos (RK(} + 1)) cos J(/An) and sin
(KA + w) cos(J/Kﬂ)\gre approximated by integrable limited developments: this
- ‘ has been done is Figure 10 by passing a second-
degree surface through nine points of each
square. When the frequency increases or the
Mach number decreases; it can be necessary to
subdivide into four those squares adjacent to-

singularity lines. With this method, computa-

tional time can be minimized by storing the

values of cos(K(A + u)) and sin(K(A + p)) for

the whole computation, and retaining border

values common to two squares. The results are
. 4—

very accurate, each coefficient Béiﬁg'combutédfﬁiﬁﬁ;ggéﬁféﬁjiéreétefiﬁﬁaﬁ110_‘;~

IV.2. Truncation Errors

These are fundamentally the same as those of the steady case treated in
III.4. and III.5. To handle the truncation effects perfectly, it would be neces-
sary to consider the complete kernel of the integral, as is done for the influence

coefficients. The complication and computer time which such a solution would

16




require lead to use of only the principal part of the kernel ——-7%?'—— and to
the assumption for the calculation that the movement is quasi-stationary in &
each T.8. The validity of this hypothesis has been confirmed by a systematic -
study of a rectangular wing with finite or infinite span in bending or torsion

(the only cases with analytic solutions for comparison [12, 13].
IV.3. Rectangular Wing of Infinite Span in Bending
The only errors to be considered in this calculation are:

(a) truncation "internal' to the wing,

(b) computation and integration of the Cp.

Indeed, the computation of the influence coefficients can be considered
perfect in regard to causes (a) and (b). The errors of type (a) are roughly
proportional to the truncation surface and they increase with the "character=-
istic frequency" fc =-\-}{'Q/n, where n is the number of squares over the chord.
This characteristic frequency can be considered to be the reduced frequency
relative to one square, and no longer to the whole wing. To eliminate this
factor, the study was made with fC = 0,1, which corresponds to ten squares over
the chord for Q = 1. The truncation surface varies from single to double when /10
Q goes from 1 to 0.5. It is seen in Table I that the_truncation errors and
those due to computation of the overall values tend to compensate each other.
Indeed, the error is small for the real part of Cz when  decreases (i.e., when
the truncation surface increases), and for the imaginary part of Cz it changes
sign. In the case of me the compensation is no longer so systematic, but the

error is never greater than 0.2%.

It should be recalled that reduced frequencies other than 1 are treated
with a limited number of squares, and that the precision of these computations
can be improved. The purpose of this study is solely to evaluate the importance

of causes of error (a) and (b).

17




TABLE I.
= 2, Length = «. Bending.

o | 100R(3C,) | 100 3(5C,) {1003 (3Cux) 100 3(3Cy)

/IC: I / ](‘z ] /lCm.\' [ Icmxl
0,5 40,15 —o1 — 0,13 0,15
0,6 -+ 0,11 — 0,10 — 0,10 0,13
0,7 -+ 0,08 — 0,09 — 0,07 0,14
0,8 -+ 0,06 — 0,06 — 0,05 0,15
0,9 + 0,05 + 0,003 — 0,02 0,19
1 -+ 0,05 -+ 0,015 ~+ 0,01 0,18

TABLE II.
= 2, Length = «, Torsion.

0 R (3C,)| 100 3{(5C.) |100R(3Cpx) 100 I(3Cyx)
Q X, "X,

/ C‘:I /lcz lcmxl mxl
0,5 | —0,24 1,59 —0,41 1,59
0,6 | —0,28 1,44 — 0,45 1,38
07 | —0,31 1,31 — 0,47 1,91
08 | —0,36 1,19 — 0,48 1,05
0,9 — 0,42 1,06 — 0,50 0,90
1 | —044 0,98 —0,52 0,80

TABLE III.

M=2, Q =1, Bending. Length A variable.
o4 |100 ﬂusc }| 100 3(3C,) [100R(SComz) | 1003(5Cyms)
) zl ‘/lczl [ {Cmx | [ 1Cmx |

1 — 0,05 — 0,15 — 0,15 — 0,06
1,2 — 0,04 — 0,27 — 0,14 0,00
1,4 | —0,03 — 0,22 — 0,13 0,05
1,6 — 0,02 — 0,20 — 0,12 0,08
1,8 — 0,01 — 0,17 — 0,11 0,12

2 — 0,004 — 0,16 — 0,11 0,14

The bending study

IV.4. Rectangular Wing of Infi-
nite Span in Torsion .
The variation of boundary condi-
tions within a single square, cause
‘(¢), is added to those errors already
studied. This type of error becomes
larger as the division becomes coarser.

Since the boundary conditions are
w e y) =1 + i(2Qa) -

the variation occurs in the imaginary
part, when ‘the preponderant influence
coefficients near the singularity
lines are the real coefficients kpq'
This means that the new cause of
error must be more sensitive in the
imaginary parts of Cz and me than in
their real parts. It is very char-
acteristic to see this error increase
when the division becomes coarser,
i.e., when Q approaches 0.5. With
normal division the accuracy remains

better than 1%, however (Table II).

IV.5. Rectangular Wing of
Finite Span

On decreasing the length, there
is an increase in the magnitude of
the errors due to determination of
the slopes of the current sheet up-

stream (d).

(Table III) shows that variation of length has little in-~

fluence on the accuracy, and that the errors are analogous to those for bending
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TABLE IV, of an infinite span. This result is

W

M=2, Q@ = 1. Torsion. Length 4 variable. very remarkable, for the upstream

[1C; | /1€ [1Cox | 1 the flow is quasi-steady, and the
1 027 111 060 0.77 fact that the flow is not conical
1,2 — 0,31 1,09 — 0,62 0,75 would have led one to expect a poor
1,4 — 0,33 1,08 — 0,63 0,74 determination of the A-term of For-
1,6 | —0,35 1,07 — 0,63 ,78 . mula (13).
1,8 | —0,36 1,06 — 0,63 0,72
2 — 0,37 1,04 — 0,63 0,71 )

The torsion study (Table IV)

confirms that the errors (d) are
sufficiently small that the result will be as good as that for the wing of in-

finite span.

The whole study of the rectangular wing indicates that it is not useful to
refine the determination of the truncations in unsteady flow, since, thanks to
those used here, it is the variation of the slope within the non-truncated

squares which becomes preponderant.

A finer division would allow an improvement in the accuracy, but would /11
considerably increase the computing time; therefore, a study of convergence for
variable division seemed the most effective way to increase the precision. Work-
ing with (n x n), (2n x 2n) and (4n x 4n) divisions, the time for computation
is 1.1 times that for the (4n x 4n) alone; the first two results allow calcula—-
tions of a correction which corresponds to passing to (8n x 8n), which would

require a computing time of the order of 16 times that for the (4n x 4n).

And so, thanks to the truncation corrections, the variation of results as
a function of the division is a regular function, monotone for the cases studied

until now, and not restricted to those presented in this paper.

To calculate the convergence correction, one sets

L ® 4G,
=G+ [ dm (1)

19




t
k % where Cz(x) is the value obtained for an

(n x n) division. Placing s ='% and
K- » » ‘ £ =

L
n 2

) | G=GC () + o (22)

From the three divisions which were

,//e//,’,,—””— Keo made, it is possible to determine two
SR . ac, .
-\\\\\\\\-‘~_- points of the curve-ag—(s). Extension .

K=~1 tos =0 is easily made by means of the

. dc, _ k .
IR family of curves = = a8 (Figure 11).
Figure 11.
Application of this correction to the rectangular wing in torsion gives
for A =2, M= 2, @ = 1:

100 8C,/1C,| = 0,25 + i 0,15
100 8C. ./ 1Cons! =—0,07 + 10,10
% . 1instead of: »
100 3C, G =— 0,87 + 1,06
100 8C,, /1Cpx | = — 0,6 4 ¢ 0,71.

IV.6. Study of a Delta Wing — Comparison with Other Methods

In the case of a non-rectangular wing, delta for example, the interaction
of the upstream current sheets on the left and right has not allowed analytic
calculation of the solution. Since the method presented here is very general,
it is possible to carry out such calculations and to compare the results with
those obtained by the method of M. Fenain and D. Guiraud-Vallée [9] and that of
L. Darovsky and R. Dat (14], the latter being based on the solution of the in~

tegral equation which expresses the slopes as functions of the CP.

The delta wing in the comparison was studied at M = /2 for a length 4 = 2,

a reduced frequency § = 0.5, first in bending, then in torsion.
For bending, the first calculation did not include the effects of curva-

. i b AL s
ture of the upstream current surface, i.e., of the coefficients Aj; Figure 12

shows the relatively large oscillations of the Cp curves in this case. A second
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< . . -1 .
7 Cp 4 o Without coefficients Aj calculation included the coefficients

: . - i i “
o5 + With coefficients Aj AT, and the oscillations are about one-
tenth as large. It is possible to draw
‘99_"3_ A the C_ curves with good accuracy.
o o 4. o 6—°_Q—¢;_°— "'; 5 ; - P
¢ - 1 S
: . o ° o c After integration over x there is
. o 0o o o Qe
-oﬁ.fwm—';- o o a poor definition of the distribution
[~
of C_ and C__ at the T.E. in the first
z mx .
) " case, while the points "follow along" .
Figure 12. very well for the second calculation
(Figure 13). Over all, the difference
"2cz 4 o Without coefficients Ai' is only about 0.5% in the real part and
78 b4 : . ]
T8} scmx * With Coefficients A™ 2% in the imaginary part, which leads
r-) .
Y one to hope that the weak residual os-~
1ojw7b"*\$&é,,J(¢=) . cillation would contribute only 0.1 to
éib 0.2% in the final result.
O\
n\ J (C mx)
S d-’—o
);Af° 2 The two numerical methods for com-
9 o ) o - R
A = parison have about 5% [accuracy] in the
e N A "
X “R{cmx) = opinion of the authors, and the results
- r(cz) - i -
SIS .,_,-( ) o confirm these evaluations. However,
Figure 13.

the computations on the rectangular
wing give hope of an accuracy of the

order of 1%. This is why a comparison was made between:

(a) the errors which appear in the comparison methods for stable flow,
‘* relative to the analytical wvalues; and

(b) the differences between those and the method proposed here.
The results are given in Table V.

It should be noted that the similarities are most striking in the imaginary
part for bending and in the real part for torsion; which was predictable since,

when § - 0, the imaginary part for bending, divided by £, approaches the plane
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TABLE V.

Steady analytic Method of Fenain Method of .
value and Guiraud-Vallée | Darovsky and Dat
~ € ‘ G 100 25 100 Slux 100 25z 100 SGms
" iCz1 . 1G] 1Cz | |G|
2,594 0,4323 + 41 + 4 14 —5
Proposed unsteady Bendi
method. - ending
R 0,04516 0,0073 + 0,9 + 0,6 41,7 — 1,8
3 1,2112 0,1935 + 4,5 + 3,7 + 0,9 — 54
Torsion about the mid-chord
R 2,5595 0,4309 + 4,8 : 4 1,2 —
h 0,6141 - 0,265 + 0,6 + 31 0,7 — 3,2

H\?
plate lift effect for stationary flow, while in torsion it is the real part

which approaches the same 1lift effect.
V. Conclusion

Inclusion of fundamental corrections has allowed an accuracy of the order
of 17 in the treatment of wings in steady or unsteady flow, even for complicated

shapes or modes.

Further, a study of convergence of the results as a function of the fine-
ness of division was carried out systematically; the correction derived from it
allows a further improvement in accuracy, and evaluation of the residual error.
This increase in accuracy corresponds to no more than 1/10 the total computa-
tion time, while this [total] computer time would be multiplied by about ten

for a finer division giving the same accuracy.

Indeed, the calculation of the coefficients K; and A; which allow reduc~

tion of the error from the order of 10%Z to 1% at constant division represents
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only one quarter of the total computer time for a 20 x 20 division; for an N x N

division, the time is proportional to N, while the calculation of the influence;
coefficients is proportional to N2, and that of ¢ is, properly, to N4.<3) Fur-
ther, the computation of a series of modes, frequencies, and Mach numbers re-
quires galculation of truncation and influence coefficients for a large number
of cases. For example, on the Univac 1108 an isolated calculation in a 20 x 20
division takes two seconds, while each one in a series of calculations takes

one second. If a greater accuracy were desired, a 40 x 40 division would require
15 seconds for each isolated calculation, and ten seconds for each one of a
group. This 40 x 40 division is the presently acceptable limit for the programj
an appreciable improvement in accuracy would lead to computing times greater
than a minute, which does not seem useful since the accuracy of the calculations

presented here has been obtained with only the 20 x 20 divisiom.

Manuscript submitted 6 June 1969

(3) N2 points of calculation, with computing time proportiomal to N2

for each of them.
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